
Introduction1
The Barkhausen noise (BN) response from ferromagnetic materials, such as 
carbon steel, is sensitive to elastic stress.  In 2004, a project was launched at 
Queen’s University to develop a BN testing system to investigate residual 
stresses in CANDU feeder pipes.  This resulted in the development of a 
state-of-the-art approach to BN measurement, which is capable of measuring 
axial and hoop stresses in feeders with an estimated sensing depth of 100 µm.

Correlations between BN and stress in SA-106 grade B piping were 
demonstrated using a three-point bending rig.  Precision for stress estimation in 
feeder pipes was found to be between ±7 MPa and ±9 MPa in tension, 
depending on the excitation �eld con�guration, and negligible in compression.  
Positional BN scans were performed on a feeder bend manufactured using the 
compression boost technique.  The scans indicate elevated BN in the bend 
cheeks and near the start of the bend, in agreement with observed increases in 
residual tensile stress in this region.

Barkhausen Noise Basics2
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BN is generated when the magnetization of 
a ferromagnetic material is varied.  

A BN probe consists of a �ux-controlled 
electromagnet and a pickup coil.

Flux control is achieved by supplying an 
alternating current to the excitation coil 
which produces the desired voltage across 
the feedback coil (VF ).

Abrupt changes in the sample 
magnetization are detected as increased 
noise in the voltage across the pickup coil 
(Vpu )

BN is identi�ed by comparing Vpu during a 
measurement (V(BN+bk)) with Vpu when 
VF  is zero (Vbk).

Integrating the BN over 1 cycle produces 
the BN energy (BNE).

Spring Loaded 4pole Prototype  BN Probe3
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Short and long cores are nested to form 
a 2D magnetisation yoke.

The �ux through each pole is controlled 
independently, allowing the excitation 
�eld orientation to be varied using 
superposition.

Comparing the BN from multiple �eld 
orientations can be used to identify 
multiple components of stress.

The pickup coil sensing area is restricted 
to the superposition region by core 
design & shielding.

The pickup coil and short core are 
spring-loaded to ensure contact with 
the feeder curvature.
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Multi-Channel Flux Control4
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error correction algorithm

Flux control was achieved using 
a combination of an analog 
feedback circuit with digital 
error correction.

The system converges 95% 
faster and 10 times more 
accurately[2] than a comparable 
digital feedback algorithm.[3]
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Three Point Bending Rig6
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5.  release (1,5)

Test Sequence

correlation between BN and stress BNE anisotropy with stress at 382 mT

The bending rig was used to estimate BN 
correlation with stress & strain.

Increasing the �eld amplitude has little e�ect 
on the slope or range of the BNE  variation 
with stress.  Thus, the BN correlation with stress  
is associated with low excitation �elds.  

BN anisotropy measurements demonstrate 
Poisson’s e�ect, and the capability to measure 
both axial and hoop components of stress 
under an approximately uniaxial load.
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T01-5 Feeder Bend Scans7
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Axial scans show a �at BN response 
outside the bend.

The scans show increased BN anisotropy 
in the cheeks compared to the extrados 
and intrados.

The maximum BN response is from the 
start of the bend where material build-up 
from the compression boost is present.
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Conclusions8
BN measurements of SA-106 grade B pipes 
have demonstrated sensitivity to tensile stress 
under elastic loads, and strong BN variations 
have been demonstrated in a sample bent 
using the compression boost technique.

BN testing is capable of providing near-surface 
estimates of axial and hoop stresses in feeder 
piping, and could likely be adapted for in situ 
feeder pipe inspection or quality assurance of 
stress relief during manufacture.

Data Analysis5

New BN analysis procedures were developed using digital �ltering and dynamic 
power spectral averaging.   This provides e�ective isolation of BN power from 
background noise, without a need for user-de�ned thresholds.
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